分析 (1)由正方形的性質(zhì)得出CD=CB,∠DCA=∠BCA,根據(jù)SAS即可得出結(jié)論;
(2)由全等三角形的對(duì)應(yīng)角相等得出∠DEC=∠BEC=70°,然后根據(jù)對(duì)頂角相等求出∠AEF,根據(jù)正方形的性質(zhì)求出∠DAC,最后根據(jù)三角形的內(nèi)角和定理即可求出結(jié)果.
解答 (1)證明:∵四邊形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA,
在△BEC和△DEC中,
$\left\{\begin{array}{l}{CD=CB}\\{∠DCA=∠BCA}\\{CE=CE}\end{array}\right.$,
∴△BEC≌△DEC(SAS);
(2)解:由(1)得△BEC≌△DEC,
∴∠DEC=∠BEC=$\frac{1}{2}$∠DEB=70°,
∴∠AEF=∠BEC=70°,
∵四邊形ABCD是正方形,
∴∠DAC=45°,
∴∠AFE=180°-70°-45°=65°.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、三角形的內(nèi)角和定理、對(duì)頂角相等等知識(shí);熟練掌握全等三角形的判定與性質(zhì)、三角形的內(nèi)角和定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 相等的弦所對(duì)的優(yōu)弧和劣弧相等 | |
| B. | 同弧所對(duì)的圓周角相等 | |
| C. | 圓是中心對(duì)稱圖形、圓心是它的對(duì)稱中心 | |
| D. | 在同圓或等圓中,相等的圓心角所對(duì)的弦相等,所對(duì)的弧也相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | m=-2,n=3 | B. | m=2,n=3 | C. | m=3,n=2 | D. | m=3,n=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com