分析 作AE=AB交BC延長線于E點,則∠B=∠E,而∠B=∠D,得到∠D=∠E,由∠ACB+∠DAC=180°,∠ACB+∠ECA=180°可得到∠DAC=∠ECA,然后根據(jù)“AAS”可判斷△DAC≌△ECA,根據(jù)全等的性質(zhì)得CD=AE,于是有CD=AB,求出CD即可.
解答 解:如圖:![]()
作AE=AB交BC延長線于E點,過A作AM⊥DC于M,
則∠AMD=∠AMC=90°,∠B=∠E=45°,
∵∠B=∠D,
∴∠D=∠E,
∵∠ACB=105°,∠B=45°,
∴∠CAB=180°-105°-45°=30°,
∵∠DAB=105°,
∴∠DAC=75°,
∴∠DAC+∠CB=180°,
∵∠ACB+∠ECA=180°,
∴∠DAC=∠ECA,
在△DAC和△ECA中
$\left\{\begin{array}{l}{∠DAC=∠ECA}\\{∠D=∠E}\\{AC=AC}\end{array}\right.$
∴△DAC≌△ECA,
∴CD=AE,
∴CD=AB,
在Rt△AMD中,∠AMD=90°,AD=$\sqrt{6}$,∠D=45°,
∴DM=AD×cos45°=$\sqrt{3}$,AM=AD×sin45°=$\sqrt{3}$,∠DAM=45°,
∵∠DAC=75°,
∴∠MAC=30°,
∴CM=AM×tan30°=1,
∴CD=$\sqrt{3}$+1,
即AB=$\sqrt{3}$+1,
故答案為:$\sqrt{3}$+1.
點評 本題考查了解直角三角形,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定的應用,能正確作出輔助線和求出CD=AB是解此題的關(guān)鍵,難度偏大.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 22013 | B. | 22014 | C. | ($\frac{2}{\sqrt{3}}$)2013 | D. | ($\frac{2}{\sqrt{3}}$)2014 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | h≥-2 | B. | h≤-2 | C. | h>-2 | D. | h<-2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com