分析 (1)由點C的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出反比例函數(shù)系數(shù)m的值,根據(jù)比例關系即可找出點D的橫坐標,由反比例函數(shù)圖象上點的坐標特征和m得值即可得出點D的坐標,再結合點C、D的坐標利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)根據(jù)一次函數(shù)解析式求出點A的坐標,通過分割圖形結合三角形的面積公式即可得出結論.
解答 解:(1)∵反比例函數(shù)y=$\frac{m}{x}$(m≠0)過點C(3,6),
∴m=3×6=18.
∵CD=2BC,BD=BC+CD,
∴BD=3BC,
∴點D的橫坐標為3×3=9.
∵點D在反比例函數(shù)y=$\frac{m}{x}$的圖象上,
∴點D的坐標為(9,2).
把點C(3,6)、點D(9,2)代入到一次函數(shù)y=kx+b(k≠0)中得:
$\left\{\begin{array}{l}{6=3k+b}\\{2=9k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-\frac{2}{3}}\\{b=8}\end{array}\right.$.
∴一次函數(shù)的解析式為y=-$\frac{2}{3}$x+8.
(2)令一次函數(shù)y=-$\frac{2}{3}$x+8中y=0,則0=-$\frac{2}{3}$x+8,解得:x=12,
即點A的坐標為(12,0).
∴S△COD=S△OAC-S△OAD=$\frac{1}{2}$OA•(yC-yD)=$\frac{1}{2}$×12×(6-2)=24.
點評 本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、三角形的面積公式以及待定系數(shù)法求函數(shù)解析式,解題的關鍵是:(1)利用待定系數(shù)法求函數(shù)解析式;(2)求出點A的坐標.本題屬于基礎題,難度不大,解決該題型題目時,找出點的坐標,再結合點的坐標利用待定系數(shù)法求出函數(shù)解析式是關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 了解某班同學“立定跳遠”的成績 | |
| B. | 了解全國中學生的心理健康狀況 | |
| C. | 了解外地游客對我市旅游景點“磁器口”的滿意程度 | |
| D. | 了解端午節(jié)期間重慶市場上的粽子質量情況 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4,-2 | B. | -4,-2 | C. | 4,2 | D. | -4,2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com