分析 (1)過A作AM垂直于BC,由三角形ABC為等邊三角形,根據(jù)三線合一得到M為BC中點(diǎn),在直角三角形ABM中,由AB及BM的長(zhǎng),利用勾股定理求出AM的長(zhǎng),利用底BC與高AM乘積的一半求出等邊三角形的面積,又三角形ABC的面積=三角形ABP的面積+三角形CBP的面積+三角形ACP的面積,利用三角形的面積公式分別表示出三個(gè)三角形的面積,相加等于求出的三角形ABC的面積,根據(jù)等邊三角形的三邊長(zhǎng)相等,等量代換后提取AB,可得出PD+PE+PF的值.
(2)由(1)得到三角形的面積和PD、PE、PF的關(guān)系,直接代入求值就行.
解答 解:(1)過A作AM⊥BC,連接PA,PB,PC,如圖所示:
∵△ABC為等邊三角形的邊長(zhǎng)為5,AM⊥BC,
∴M為BC的中點(diǎn),即BM=CM=$\frac{1}{2}$BC=$\frac{5}{2}$,
在直角三角形ABM中,AB=5,BM=$\frac{5}{2}$,
根據(jù)勾股定理得:AM=$\sqrt{{AB}^{2}{-BM}^{2}}$=$\frac{5}{2}$$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$BC•AM=$\frac{25\sqrt{3}}{4}$,
又∵S△ABC=S△ABP+S△BPC+S△ACP
=$\frac{1}{2}$PE•AB+$\frac{1}{2}$PF•AC+$\frac{1}{2}$PD•BC
=$\frac{1}{2}$AB(PE+PF+PD),
∴$\frac{1}{2}$×5(PE+PF+PD)=$\frac{25\sqrt{3}}{4}$
則PE+PD+PF=$\frac{5\sqrt{3}}{2}$
故答案為:$\frac{5\sqrt{3}}{2}$;
(2)由(1)證得S△ABC=$\frac{1}{2}$AB(PE+PF+PD),
∴S△ABC=$\frac{1}{2}$×5×(10+8+6)=60.
故答案為:60.
點(diǎn)評(píng) 此題考查了等邊三角形的性質(zhì),勾股定理,以及三角形的面積公式,其中連接P與三角形ABC的三個(gè)頂點(diǎn),得出S△ABC=S△ABP+S△BPC+S△ACP是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
| x | -2 | 0 | 9 |
| y | -5 | -3 | 6 |
| x | -2 | 0 | 1.5 | 4 |
| y | 3 | 1 | -0.5 | -3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 北偏西30° | B. | 南偏西30° | C. | 南偏東60° | D. | 南偏西60° |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com