分析 (1)由AB是直徑,AM、BN是切線,得到AM⊥AB,BN⊥AB,根據(jù)垂直于同一條直線的兩直線平行即可得到結(jié)論;
(2)過點(diǎn)D作 DF⊥BC于F,則AB∥DF,由(1)AM∥BN,得到四邊形ABFD為矩形,于是得到DF=AB=2,BF=AD=x,根據(jù)切線長定理得DE=DA=x,CE=CB=y.根據(jù)勾股定理即可得到結(jié)果;
(3)根據(jù)梯形的面積公式即可得到結(jié)論.
解答
(1)證明:∵AB是直徑,AM、BN是切線,
∴AM⊥AB,BN⊥AB,
∴AM∥BN;
(2)解:過點(diǎn)D作 DF⊥BC于F,則AB∥DF,
由(1)AM∥BN,
∴四邊形ABFD為矩形,
∴DF=AB=2,BF=AD=x,
∵DE、DA,CE、CB都是切線,
∴根據(jù)切線長定理,得DE=DA=x,CE=CB=y.
在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC-BF=y-x,
∴(x+y)2=22+(y-x)2,
化簡(jiǎn),得$y=\frac{1}{x}(x>0)$.
(3)解:由(1)、(2)得,四邊形的面積$S=\frac{1}{2}AB(AD+BC)=\frac{1}{2}×2×({x+\frac{1}{x}})$,
即$S=x+\frac{1}{x}(x>0)$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),平行線的判定,矩形的性質(zhì),勾股定理,求梯形的面積,正確的周長輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 無法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $y=\frac{1}{x+1}$ | B. | $y=-\frac{1}{x+1}$ | C. | $y=\frac{1}{1-x}$ | D. | $y=\frac{1}{x-1}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com