分析 首先過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,易得四邊形EMON是正方形,點A,O,D,E共圓,則可得△OEN是等腰直角三角形,求得EN的長,繼而證得Rt△AOM≌Rt△DON,得到AM=DN,繼而求得答案.
解答 解:過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,
∵∠AED=90°,
∴四邊形EMON是矩形,
∵正方形ABCD的對角線交于點O,
∴∠AOD=90°,OA=OD,
∴∠AOD+∠AED=180°,
∴點A,O,D,E共圓,
∴$\widehat{OA}$=$\widehat{OD}$,
∴∠AEO=∠DEO=$\frac{1}{2}$∠AED=45°,
∴OM=ON,
∴四邊形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=4$\sqrt{2}$,
∴EN=4,
∴EM=EN=4,
在Rt△AOM和Rt△DON中,
$\left\{\begin{array}{l}{OA=OD}\\{OM=ON}\end{array}\right.$,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN-ED=4-3=1,
∴AE=AM+EM=1+4=5.
故答案為:5.
點評 此題考查了正方形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形性質(zhì).此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| 甲 | 乙 | 丙 | 丁 | |
| 平均分 | 80 | 80 | 85 | 85 |
| 方 差 | 59 | 41 | 54 | 42 |
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com