分析 (1)首先證明AC=CD,再根據(jù)HL證明△ABC≌△DEC即可.
(2)利用:“8字型”證明∠AFE=∠ECD=90°即可.
(3))利用S△BCE+S△ACD=S△ABD-S△ABE,即可得出結(jié)論.
解答 解:
(1)證明:∵AC⊥BD,∠CAD=45°,
∴∠ACD=90°,
∴∠CAD=∠ADC=45°,
∴AC=CD,
在Rt△ABC和Rt△DEC中,
$\left\{\begin{array}{l}{AB=DE}\\{AC=CD}\end{array}\right.$,
∴Rt△ABC≌△Rt△DEC.
(2)∵△ABC≌△DEC,
∴∠BAC=∠EDC,
∵∠EDC+∠CED=90°,∠CED=∠AEF,
∴∠AEF+∠BAC=90°,
∴∠AFE=90°,
∴DF⊥AB.
(2)∵S△BCE+S△ACD=S△ABD-S△ABE,
∴$\frac{1}{2}$a2+$\frac{1}{2}$b2=$\frac{1}{2}$•c•DF-$\frac{1}{2}$•c•EF=$\frac{1}{2}$•c•(DF-EF)=$\frac{1}{2}$•c•DE=$\frac{1}{2}$c2,
∴a2+b2=c2
點評 本題考查全等三角形的判定和性質(zhì)、勾股定理的證明等知識,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),學(xué)會利用面積法證明勾股定理,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com