分析 (1)先根據(jù)E是∠AOB的平分線(xiàn)上一點(diǎn),EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OC=OD即可;
(2)由等腰三角形的性質(zhì)即可得出OE是CD的垂直平分線(xiàn).
解答 證明:∵E是∠AOB的平分線(xiàn)上一點(diǎn),EC⊥OA,ED⊥OB,
∴DE=CE,OE=OE,
在Rt△ODE與Rt△OCE中,$\left\{\begin{array}{l}{OE=OE}\\{DE=CE}\end{array}\right.$,
∴Rt△ODE≌Rt△OCE(HL),
∴OC=OD;
(2)∵△DOC是等腰三角形,
∵OE是∠AOB的平分線(xiàn),
∴OE是CD的垂直平分線(xiàn).
點(diǎn)評(píng) 本題考查的是角平分線(xiàn)的性質(zhì)、全等三角形的判定與性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com