分析 原式利用除法法則變形,約分后利用同分母分式的減法法則計(jì)算得到最簡(jiǎn)結(jié)果,把m,n的值代入計(jì)算即可求出值.
解答 解:$\frac{{m}^{2}+2nm}{{m}^{2}+nm}$+$\frac{2{n}^{2}}{{m}^{2}-{n}^{2}}$÷$\frac{n}{n-m}$
=$\frac{m+2n}{m+n}$-$\frac{2{n}^{2}}{(m+n)(m-n)}$×$\frac{m-n}{n}$
=$\frac{m+2n}{m+n}$-$\frac{2n}{m+n}$
=$\frac{m+2n-2n}{m+n}$
=$\frac{m}{m+n}$,
當(dāng)m=-2,n=2-$\sqrt{3}$時(shí),原式=$\frac{-2}{-2+2-\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{25}{8}$ | B. | $\frac{25}{16}$ | C. | $\frac{25}{4}$ | D. | 以上都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a>-5 | B. | a≥-5 | C. | a<-5 | D. | a<5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com