分析 首先證明AE=DE;進(jìn)而證明FC=DE;證明△AEF∽△ABC,列出比例式AE:AB=AF:AC,即可解決問(wèn)題.
解答
解:∵DE∥AC,
∴∠CAD=∠EDA;
又∵∠EAD=∠DAC,
∴∠EDA=∠EAD,
∴ED=EA;
因?yàn)镈E∥AC,EF∥BC,
∴四邊形DCFE是平行四邊形,
∴ED=FC;
設(shè)ED=EA=FC=x,
∵EF∥BC,
∴△AEF∽△ABC,
∴AE:AB=AF:AC,
∴x:15=4:(4+x),
∴x=6或x=-10(舍去),
∴DE=6,
故答案為:6.
點(diǎn)評(píng) 本題考查相似三角形的判定及其性質(zhì),平行四邊形的判定,等腰三角形的判定及其性質(zhì)等幾何知識(shí)點(diǎn)的應(yīng)用問(wèn)題;對(duì)綜合的分析問(wèn)題解決問(wèn)題的能力提出了較高的要求.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{4}$ | B. | $\sqrt{8}$ | C. | $\sqrt{12}$ | D. | $\sqrt{24}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2:3 | B. | 3:4 | C. | 4:3 | D. | 3:2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com