分析 首先求出6a-b與$\frac{1}{2}$(3a+7b)的差是多少;然后根據(jù)不等式的性質(zhì),由a>b,可得a-b>b-b,即a-b>0,據(jù)此判斷出6a-b與$\frac{1}{2}$(3a+7b)的大小關(guān)系即可.
解答 解:(6a-b)-[$\frac{1}{2}$(3a+7b)]
=6a-b-$\frac{3}{2}a-\frac{7}{2}b$
=$\frac{9}{2}a-\frac{9}{2}b$
=$\frac{9}{2}(a-b)$
∵a>b,
∴a-b>b-b,即a-b>0,
∴$\frac{9}{2}(a-b)$>0,
∴(6a-b)-[$\frac{1}{2}$(3a+7b)]>0,
∴6a-b>$\frac{1}{2}$(3a+7b).
點(diǎn)評(píng) 此題主要考查了不等式的基本性質(zhì):(1)不等式的兩邊同時(shí)乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;(2)不等式的兩邊同時(shí)乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變;(3)不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)或同一個(gè)含有字母的式子,不等號(hào)的方向不變.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{12}$ | B. | $\frac{12}{5}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com