分析 先根據(jù)旋轉(zhuǎn)的性質(zhì)得∠AOC=∠BOD=40°,OA=OC,∠OCD=∠A,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和可計算出∠A=70°,則∠OCD=70°,再由∠AOD=∠AOC+∠COD=95°計算出∠COD=55°,然后在△OCD中利用三角形內(nèi)角和定理可計算出∠D的度數(shù).
解答 解:∵△COD是△AOB繞點O順時針方向旋轉(zhuǎn)40°后所得的圖形,點C恰好在AB上,
∴∠AOC=∠BOD=40°,OA=OC,∠OCD=∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠A=$\frac{1}{2}$(180°-40°)=70°,
∴∠OCD=70°,
∵∠AOD=∠AOC+∠COD=95°,
∴∠COD=95°-40°=55°,
∴∠D=180°-∠COD-∠OCD=180°-55°-70°=55°.
故答案為55°
點評 本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì)和三角形內(nèi)角和定理.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{3}-\sqrt{2}$=1 | B. | a6÷a2=a3 | C. | x2+x3=x5 | D. | (-x2)3=-x6 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| 每天使用零花錢數(shù) | 1 | 2 | 3 | 5 | 6 |
| 人數(shù) | 2 | 5 | 4 | 3 | 1 |
| A. | 2元、3元 | B. | 2.5元、3元 | C. | 2元、2.5元 | D. | 3元、2.5元 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 40° | B. | 50° | C. | 130° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com