分析 (1)利用菱形對角線互相垂直且平分可得AO、OB,根據(jù)勾股定理求出即可;
(2)①由(1)知,菱形ABCD的邊長是2,AC=2,然后由△ABC和△ACD是等邊三角形,利用ASA可證得△ABE≌△ACF;
②由①可得AE=AF,根據(jù)有一個角是60°的等腰三角形是等邊三角形推出即可.
解答 解:(1)∵在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,
∴∠AOB=90°,OA=$\frac{1}{2}$AC=1,BO=$\frac{1}{2}$BD=$\sqrt{3}$,
在Rt△AOB中,由勾股定理得:AB=$\sqrt{A{O}^{2}+B{O}^{2}}$=2;
故答案為:2;
(2)①∵由(1)知,菱形ABCD的邊長是2,AC=2,
∴△ABC和△ACD是等邊三角形,
∴∠BAC=∠BAE+∠CAE=60°,
∵∠EAF=∠CAF+∠CAE=60°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
$\left\{\begin{array}{l}{∠BAE=∠CAF}\\{AB=AC}\\{∠EBA=∠FCA}\end{array}\right.$,
∴△ABE≌△ACF(ASA),
②△AEF是等邊三角形,
理由是:∵△ABE≌△ACF,
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等邊三角形.
點評 此題屬于四邊形的綜合題.考查了菱形的性質(zhì),全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì)以及圖形的旋轉(zhuǎn).解題的關(guān)鍵是掌握菱形菱形對角線互相垂直且平分.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 70° | B. | 65° | C. | 55° | D. | 45° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k=1,b=0 | B. | k=-1,b=2 | C. | k=2,b=-1 | D. | k=-2,b=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4cm | B. | 8cm | C. | 2cm | D. | 6cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 7 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com