分析 (1)由折疊的性質(zhì)得到BE=PE,EC與PB垂直,根據(jù)E為AB中點,得到AE=EB=PE,利用三角形內(nèi)一邊上的中線等于這條邊的一半的三角形為直角三角形,得到∠APB為90°,進(jìn)而得到AF與EC平行,再由AE與FC平行,利用兩對邊平行的四邊形為平行四邊形即可得證;
(2)根據(jù)三角形AEP為等邊三角形,得到三條邊相等,三內(nèi)角相等,再由折疊的性質(zhì)及鄰補(bǔ)角定義得到一對角相等,根據(jù)同角的余角相等得到一對角相等,再由AP=EB,利用AAS即可得證;
(3)過P作PM⊥CD,在直角三角形EBC中,利用勾股定理求出EC的長,利用面積法求出BQ的長,根據(jù)BP=2BQ求出BP的長,在直角三角形ABP中,利用勾股定理求出AP的長,根據(jù)AF-AP求出PF的長,由PM與AD平行,得到三角形PMF與三角形ADF相似,由相似得比例求出PM的長,再由FC=AE=3,求出三角形CPF面積即可.
解答 (1)證明:由折疊得到BE=PE,EC⊥PB,
∵E為AB的中點,
∴AE=EB=PE,
∴AP⊥BP,
∴AF∥EC,
∵AE∥FC,
∴四邊形AECF為平行四邊形;
(2)∵△AEP為等邊三角形,
∴∠BAP=∠AEP=60°,AP=AE=EP=EB,
∵∠PEC=∠BEC,![]()
∴∠PEC=∠BEC=60°,
∵∠BAP+∠ABP=90°,∠ABP+∠BEQ=90°,
∴∠BAP=∠BEQ,
在△ABP和△EBC中,
$\left\{\begin{array}{l}{∠APB=∠EBC=90°}\\{∠BAP=∠BEQ}\\{AP=EB}\end{array}\right.$,
∴△ABP≌△EBC(AAS),
∵△EBC≌△EPC,
∴△ABP≌△EPC;
(3)過P作PM⊥DC,交DC于點M,
在Rt△EBC中,EB=3,BC=4,
根據(jù)勾股定理得:EC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵S△EBC=$\frac{1}{2}$EB•BC=$\frac{1}{2}$EC•BQ,
∴BQ=$\frac{3×4}{5}$=$\frac{12}{5}$,
由折疊得:BP=2BQ=$\frac{24}{5}$,
在Rt△ABP中,AB=6,BP=$\frac{24}{5}$,
根據(jù)勾股定理得:AP=$\sqrt{A{B}^{2}-B{P}^{2}}$=$\frac{18}{5}$,
∵四邊形AECF為平行四邊形,
∴AF=EC=5,F(xiàn)C=AE=3,
∴PF=5-$\frac{18}{5}$=$\frac{7}{5}$,
∵PM∥AD,
∴$\frac{PF}{AF}$=$\frac{PM}{AD}$,即$\frac{\frac{7}{5}}{5}$=$\frac{PM}{4}$,
解得:PM=$\frac{28}{25}$,
則S△PFC=$\frac{1}{2}$FC•PM=$\frac{1}{2}$×3×$\frac{28}{25}$=$\frac{42}{25}$.
點評 此題屬于四邊形綜合題,涉及的知識有:全等三角形的判定與性質(zhì),折疊的性質(zhì),三角形內(nèi)一邊上的中線等于這條邊的一半的三角形為直角三角形,等邊三角形的性質(zhì),勾股定理,三角形的面積求法,相似三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 40人 | B. | 400人 | C. | 480人 | D. | 500人 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3.5 | B. | 4 | C. | 7 | D. | 14 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com