分析 (1)已知頂點(diǎn)P的坐標(biāo),設(shè)拋物線的頂點(diǎn)式為:y=a(x-1)2,將點(diǎn)(0,1)代入即可;
(2)根據(jù)平移規(guī)律求出平移后拋物線的頂點(diǎn)坐標(biāo),即P(2,-1),根據(jù)頂點(diǎn)式,得平移后拋物線解析式y(tǒng)=(x-2)2-1,由解析式,得A(0,-1),B(4,3),可求△DBP的面積;
(3)過點(diǎn)Q作QN⊥BC于點(diǎn)N,由QN∥FC,得△BQN∽△BFC,利用相似比求FC,已知AC=4,△BCF的面積為$\frac{8}{3}$,可得$\frac{1}{2}FC•BC=\frac{8}{3}$,進(jìn)而可得$\frac{1}{2}$×$\frac{4}{t}$×4=$\frac{8}{3}$,求出t,可得Q點(diǎn)坐標(biāo).
解答 (1)解:∵拋物線頂點(diǎn)為D(1,0),經(jīng)過點(diǎn)(0,1)
∴可設(shè)拋物線的解析式為:y=a(x-1)2,將點(diǎn)(0,1)代入,得a=1,
∴拋物線的解析式為y=x2-2x+1;
(2)就;根據(jù)題意,平移后頂點(diǎn)坐標(biāo)P(2,-1)
∴拋物線的解析式為:y=(x-2)2-1,
∴A(0,-1),B(4,3),
∴S△DBP=3;
(3)證明:過點(diǎn)Q作QN⊥BC于點(diǎn)N,
設(shè)點(diǎn)Q的坐標(biāo)是(t,t2-4t+3),則QN=4-t.
∵QN∥FC,
∴△BQN∽△BFC,![]()
∴$\frac{QN}{FC}$=$\frac{BN}{BC}$,
即$\frac{4-t}{FC}$=$\frac{3-({t}^{2}-4t+3)}{4}$,
得FC=$\frac{4}{t}$,
又∵AC=4,S△BCF=$\frac{8}{3}$,
∴$\frac{1}{2}FC•BC=\frac{8}{3}$,
即$\frac{1}{2}$×$\frac{4}{t}$×4=$\frac{8}{3}$,
解得t=3,
∴Q(3,0).
點(diǎn)評(píng) 本題考查了二次函數(shù)的解析式的求法,相似三角形的判定與性質(zhì)的綜合能力培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com