分析 (1)根據(jù)平行線的性質(zhì)得到∠DAG=∠BDF=35°,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)A,根據(jù)平行線的性質(zhì)得到∠BAG=∠BDF,根據(jù)余角的性質(zhì)即可得到結(jié)論;B,根據(jù)平行線的性質(zhì)得到∠CAG+∠AEH=180°,等量代換得到∠GEH=∠CAG,于是得到結(jié)論.
解答 解:(1)∵DF∥AG,
∴∠DAG=∠BDF=35°,
∵∠BAC=90°,
∴∠CAG=55°,
同理∠CAG=70°;
故答案為:55,70;
(2)A,
理由:∵l∥m,
∴∠BAG=∠BDF,
∵∠BDF=α,
∴∠BAG=α,
∵∠BAC=90°,
∴∠CAG=∠BAC-∠AG=90°-α;
B,∠GEH+∠BDF=90°,
∵l∥m,
∴∠BDF=∠BAG,
∵m∥n,
∴∠CAG+∠AEH=180°,
∵∠GEH+∠AEH=180°,
∴∠GEH=∠CAG,
∵∠BAC=90°,
∴∠BAG+∠CAG=90°,
∴∠GEH+∠BDF=90°.
點評 本題考查了等腰直角三角形的性質(zhì),平行線的性質(zhì)和判定,熟練掌握等腰直角三角形的性質(zhì)是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 三邊a、b、c | a+b-c | $\frac{S}{l}$ |
| 3、4、5 | 2 | $\frac{1}{2}$ |
| 5、12、13 | 4 | 1 |
| 8、15、17 | 6 | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | 9 | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2a | B. | -2b | C. | -2a-b | D. | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com