分析 (1)欲證明四邊形ABDF是平行四邊形,只要證明AF∥BD,AF=BD即可.
(2)結(jié)論:四邊形ADCF是矩形,只要證明∠DAF=90°即可.
(3)作AM⊥DG 于M,連接BM,先證明AM=2OG,再證明AM=AF即可解決問(wèn)題.
解答 (1)證明:∵點(diǎn)D,E分別是邊BC,AC上的中點(diǎn),
∴ED∥AB,AE=CE,![]()
∵EF=ED,
∴四邊形ADCF是平行四邊形,
∴AF∥BC,
∴四邊形ABDF是平行四邊形;
(2)四邊形ADCF是矩形.
理由:∵AE=$\frac{1}{2}$DF,EF=ED,
∴AE=EF=DE,
∴∠EAF=∠AFE,∠DAE=∠ADE,
∴∠DAF=∠EAF+∠EAD=$\frac{1}{2}$×180°=90°,
由(1)知:四邊形ADCF是平行四邊形;
∴四邊形ADCF是矩形;![]()
(3)證明:作AM⊥DG 于M,連接BM.
∵四邊形ABDF是平行四邊形,
∴OA=OD,∵OG∥AM,
∴GM=GD,
∴AM=2OG,
∵BG⊥DM,GM=GD,
∴BM=BD,
∴∠CBF=∠MBG,
∵∠CBF=2∠ABF,
∴∠ABM=∠ABF,
∵AM∥BF,
∴∠MAB=∠ABF,
∴∠MAB=∠MBA,
∴AM=BM=BD=AF=2OG,
∴OG=$\frac{1}{2}$AF.
點(diǎn)評(píng) 本題考查四邊形綜合題、平行四邊形的判定和性質(zhì)、矩形的判定和性質(zhì)、三角形中位線定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)解決問(wèn)題,學(xué)會(huì)添加常用輔助線,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 三角形任意兩邊的和大于第三邊 | |
| B. | 四邊形的內(nèi)角和、外角和都是360度 | |
| C. | 菱形的對(duì)角線互相平分且相等 | |
| D. | 順次連接正方形各點(diǎn)中點(diǎn)所得的四邊形是正方形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com