分析 (1)連接FA,根據(jù)垂直的定義得到EF⊥AB,得到BF=AF,推出BF=ED,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到∠B=∠AED,得到DE∥BC,推出四邊形形FCDE,得到E到BC的距離最大時(shí),四邊形FCDE的面積最大,即點(diǎn)A到DE的距離最大,推出當(dāng)A為$\widehat{DE}$的中點(diǎn)時(shí),于是得到結(jié)論.
解答 解:(1)連接FA,
∵∠FEB=90°,
∴EF⊥AB,
∵BE=AE,
∴BF=AF,
∵∠FEA=∠FEB=90°,
∴AF是⊙O的直徑,
∴AF=DE,![]()
∴BF=ED,
在Rt△EFB與Rt△ADE中,$\left\{\begin{array}{l}{BE=AE}\\{BF=DE}\\{\;}\end{array}\right.$,
∴Rt△EFB≌Rt△ADE;
(2)∵Rt△EFB≌Rt△ADE,
∴∠B=∠AED,
∴DE∥BC,
∵ED為⊙O的直徑,
∴AC⊥AB,
∵EF⊥AB,
∴EF∥CD,
∴四邊形FCDE是平行四邊形,
∴E到BC的距離最大時(shí),四邊形FCDE的面積最大,
即點(diǎn)A到DE的距離最大,
∴當(dāng)A為$\widehat{DE}$的中點(diǎn)時(shí),
點(diǎn)A到DE的距離最大是2,
∴四邊形FCDE的最大面積=4×2=8.
點(diǎn)評 本題考查了圓周角定理,平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 兩點(diǎn)之間的距離 | B. | 點(diǎn)到直線的距離 | ||
| C. | 兩條直線之間的距離 | D. | 空中飛行的距離 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (3,-2) | B. | (0,$\frac{3}{2}$) | C. | (3,0) | D. | ($\frac{3}{2}$,0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,0) | B. | ($\frac{4}{3}$,0) | C. | ($\sqrt{2}$,0) | D. | (2,0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{EG}{AD}$=$\frac{CE}{CA}$ | B. | $\frac{EC}{EA}$=$\frac{CF}{BF}$ | C. | $\frac{DG}{GC}$=$\frac{DE}{FC}$ | D. | $\frac{CG}{DG}$=$\frac{CF}{AE}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com