分析 (1)先證∠AED=∠CGD,再證明△ADE≌△CDG,根據(jù)全等三角形的對應(yīng)邊相等即可得出結(jié)論;
(2)先證明△BCE≌△DCE,得出對應(yīng)角相等∠BEC=∠DEG,得出∠BEC=∠DGE,即可證出平行線.
解答 證明:(1)∵DE=DG,
∴∠DEG=∠DGE,
∴∠AED=∠CGD,
∵四邊形ABCD是正方形,
∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,
在△ADE和△CDG中,
$\left\{\begin{array}{l}{∠AED=∠CGD}&{\;}\\{∠DAC=∠DCA}&{\;}\\{AD=CD}&{\;}\end{array}\right.$,
∴△ADE≌△CDG(AAS),
∴AE=CG;
(2)在△BCE和△DCE中,
$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCE=∠DCE}&{\;}\\{CE=CE}&{\;}\end{array}\right.$,
∴△BCE≌△DCE (SAS),
∴∠BEC=∠DEG,
∴∠BEC=∠DGE,
∴BE∥DF.
點(diǎn)評 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (3,2) | B. | (-3,2) | C. | (3,-2) | D. | (-3,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 一定是鈍角 | B. | 一定是銳角 | ||
| C. | 可能是鈍角,可能是銳角 | D. | 以上答案都不對 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com