分析 (1)連結(jié)OB,如圖,由等腰三角形的性質(zhì)得∠1=∠2,∠4=∠5,由OA⊥AC得∠2+∠3=90°,加上∠3=∠4,易得∠5+∠1=90°,即∠OBA=90°,于是根據(jù)切線(xiàn)的判定定理可得AB是⊙O的切線(xiàn);
(2)作OH⊥PB于H,如圖,根據(jù)垂徑定理得到BH=PH,設(shè)⊙O的半徑為r,則PA=OA-OP=3-r,根據(jù)勾股定理得到AC2=PC2-PA2=(2$\sqrt{3}$)2-(3-r)2,AB2=OA2-OB2=32-r2,所以(2$\sqrt{3}$)2-(3-r)2=32-r2,解得r=1,則PA=2,然后證明Rt△APC∽R(shí)t△HPO,利用相似比可計(jì)算出PH=$\frac{\sqrt{3}}{3}$,于是得到PB=2PH=$\frac{2\sqrt{3}}{3}$.
解答
(1)證明:連結(jié)OB,如圖,
∵AB=AC,
∴∠1=∠2,
∵OA⊥AC,
∴∠2+∠3=90°,
∵OB=OP,
∴∠4=∠5,
而∠3=∠4,
∴∠5+∠2=90°,
∴∠5+∠1=90°,即∠OBA=90°,
∴OB⊥AB,
∴AB是⊙O的切線(xiàn);
(2)解:作OH⊥PB于H,如圖,則BH=PH,
設(shè)⊙O的半徑為r,則PA=OA-OP=3-r,
在Rt△PAC中,AC2=PC2-PA2=(2$\sqrt{3}$)2-(3-r)2,
在Rt△OAB中,AB2=OA2-OB2=32-r2,
而AB=AC,
∴(2$\sqrt{3}$)2-(3-r)2=32-r2,解得r=1,
即⊙O的半徑為1;
∴PA=2,
∵∠3=∠4,
∴Rt△APC∽R(shí)t△HPO,
∴$\frac{PA}{PH}$=$\frac{PC}{PO}$,即$\frac{2}{PH}$=$\frac{2\sqrt{3}}{1}$,
∴PH=$\frac{\sqrt{3}}{3}$,
∴PB=2PH=$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了切線(xiàn)的判定:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.也考查了垂徑定理和勾股定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1:16 | B. | 1:18 | C. | 1:20 | D. | 1:24 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6a-5a=1 | B. | (a2)3=a5 | C. | (-2x2y)3=-6x6y3 | D. | 3ab2•(-a)=-3a2b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 40° | B. | 50° | C. | 60° | D. | 130° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com