分析 (1)首先根據(jù)∠1=∠2可證明∠CAB=∠EAD,然后根據(jù)SAS證明△ACB≌△ADE,即可證明BC=DE.
(2)連接OA,根據(jù)切線的性質(zhì),即可求得∠C的度數(shù).
解答 (1)證明:
∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
即:∠CAB=∠EAD,
在△ACB和△ADE中:
$\left\{\begin{array}{l}{AB=AE}\\{∠CAB=∠EAD}\\{AC=AD}\end{array}\right.$,
∴△ACB≌△ADE(SAS),
∴BC=DE.
(2)解:
如圖,連接OA,![]()
∵AC是⊙O的切線,
∴∠OAC=90°,
∵OA=OB,
∴∠B=∠OAB=25°,
∴∠AOC=50°,
∴∠C=40°.
點(diǎn)評(píng) (1)此題主要考查了全等三角形的判定與性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.
(2)本題考查了圓的切線性質(zhì),以及等腰三角形的性質(zhì),已知切線時(shí)常用的輔助線是連接圓心與切點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a≥1 | B. | a>1且a≠5 | C. | a≥1且a≠5 | D. | a≠5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com