分析 如圖,連接BD,作BD的中點(diǎn)M,連接FM、EM.利用三角形中位線定理證得△EMF是等腰三角形,則∠MEF=∠MFE.利用三角形中位線定理、平行線的性質(zhì)推知∠MEF=∠P,∠MFE=∠CQF.根據(jù)等量代換證得∠P=∠CQF.
解答 證明:如圖,連接BD,作BD的中點(diǎn)M,連接EM、FM.
∵點(diǎn)E是AD的中點(diǎn),![]()
∴在△ABD中,EM∥AB,EM=$\frac{1}{2}$AB,
∴∠MEF=∠P
同理可證:FM∥CD,F(xiàn)M=$\frac{1}{2}$CD.
∴∠MFQ=∠CQF,
又∵AB=CD,
∴EM=FM,
∴∠MEF=∠MFE,
∴∠P=∠CQF..
點(diǎn)評(píng) 此題考查的是三角形中位線的性質(zhì)、等腰三角形判定和性質(zhì)等知識(shí),解題的關(guān)鍵是題目中出現(xiàn)中點(diǎn)的條件想到添加三角形的中位線作為輔助線,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 不變 | B. | 擴(kuò)大到原來(lái)的2倍 | C. | 縮小到原來(lái)的$\frac{1}{2}$ | D. | 縮小到原來(lái)的$\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (2,1) | B. | (2,-1) | C. | (1,-2) | D. | (0,5) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com