分析 先過A作AH⊥FG于H,連接AG,構(gòu)造全等三角形,再根據(jù)直角三角形,利用勾股定理列方程求解,即可得到BE,CE的長,進(jìn)而得到$\frac{CE}{BE}$的值.
解答
解:如圖所示,過A作AH⊥FG于H,連接AG,則∠B=∠AHE=90°,
由折疊可得,∠AEF=∠AEC,而∠BEF=∠HEC,
∴∠AEB=∠AEH,
在△ABE和△AHE中,
$\left\{\begin{array}{l}{∠B=∠AHE}\\{∠AEB=∠AEH}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△AHE(AAS),
∴BE=HE,AB=AH=AD,
在Rt△ADG和Rt△AHG中,
$\left\{\begin{array}{l}{AD=AH}\\{AG=AG}\end{array}\right.$,
∴Rt△ADG≌Rt△AHG(HL),
∴DG=HG,
設(shè)BC=CD=4,BE=HE=x,則CE=4-x,DG=HG=3,CG=1,
∵Rt△CEG中,CG2+CE2=EG2,
∴12+(4-x)2=(x+3)2,
解得x=$\frac{4}{7}$,
∴BE=$\frac{4}{7}$,CE=4-$\frac{4}{7}$=$\frac{24}{7}$,
∴$\frac{CE}{BE}$=6.
故答案為:6.
點(diǎn)評 本題主要考查了折疊問題,全等三角形的判定與性質(zhì)以及勾股定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線,構(gòu)造全等三角形,依據(jù)全等三角形對應(yīng)邊相等以及勾股定理列方程求解.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 品種 | 購買價(元/棵) |
| 甲 | 20 |
| 乙 | 32 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com