分析 (1)如圖1,由AD是∠BAC的平分線,得到∠1=∠2=$\frac{1}{2}∠$BAC=$\frac{1}{2}$(180°-∠ABC-∠ACB)=90°-$\frac{1}{2}$(∠ABC+∠C),由于BE⊥AC,得到∠2+∠ADE=90°,根據(jù)對頂角的性質(zhì)得到∠2=90°-∠BFD,于是得出結(jié)論;
(2)如圖2,由AD是∠BAC的平分線,得到∠1=∠2=$\frac{1}{2}∠$BAC=$\frac{1}{2}$(180°-∠ABC-∠ACB)=90°-$\frac{1}{2}$(∠ABC+∠C),根據(jù)BE⊥AC,得到∠EAF+∠BFD=90°,由對頂角相等得到∠2=∠EAF,于是得到結(jié)論.
解答
解:(1)如圖1,∵AD是∠BAC的平分線,
∴∠1=∠2=$\frac{1}{2}∠$BAC=$\frac{1}{2}$(180°-∠ABC-∠ACB)=90°-$\frac{1}{2}$(∠ABC+∠C),
∵BE⊥AC,
∴∠2+∠ADE=90°,
∵∠AFE=∠DFB,
∴∠2=90°-∠BFD,
∴∠BFD=$\frac{1}{2}$(∠ABC+∠C);![]()
(2)(1)中結(jié)論成立,
如圖2,∵AD是∠BAC的平分線,
∴∠1=∠2=$\frac{1}{2}∠$BAC=$\frac{1}{2}$(180°-∠ABC-∠ACB)=90°-$\frac{1}{2}$(∠ABC+∠C),
∵BE⊥AC,
∴∠EAF+∠BFD=90°,
∵∠2=∠EAF,
∴∠2+∠BFD=90°,
∴∠2=90°-∠BFD,
∴∠BFD=$\frac{1}{2}$(∠ABC+∠C).
點評 本題考查了三角形的內(nèi)角和,角平分線的定義,對頂角的性質(zhì),正確的作出圖形是解答(2)問的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com