分析 (1)連接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度數(shù),關(guān)鍵三角形內(nèi)角和定理求出∠A,即可得出答案;
(2)根據(jù)勾股定理求出BD,分別求出△ODB和扇形DOE的度數(shù),即可得出答案.
解答
(1)證明:連接OD,
∵AB是⊙O切線,
∴∠ODB=90°,
∴BE=OE=OD=2,
∴∠B=30°,∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC=$\frac{1}{2}$∠DOB=30°,
∴∠ADC=90°-∠CDO=60°,
∵在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∴∠A=∠ACD=∠ADC=60°,
∴△ACD為等邊三角形;
(2)解:∵∠ODB=90°,OD=2,BO=2+2=4,
由勾股定理得:BD=2$\sqrt{3}$,
∴陰影部分的面積S=S△ODB-S扇形DOE=$\frac{1}{2}$×2$\sqrt{3}$×2-$\frac{60π{•2}^{2}}{360}$=2$\sqrt{3}$-$\frac{2}{3}$π.
點評 本題考查了含30度角的直角三角形性質(zhì),勾股定理,扇形的面積,勾股定理,切線的性質(zhì)等知識點的應(yīng)用,主要考查學(xué)生綜合性運用性質(zhì)進行推理和計算的能力.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y1>0>y2 | B. | y1>y2>0 | C. | 0>y1>y2 | D. | y2>0>y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 27° | B. | 36° | C. | 54° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com