分析 (1)首先證明AF=EC,AF∥EC,推出四邊形AECF是平行四邊形,再證明∠AEC=90°即可解決問(wèn)題;
(2)分別在Rt△ABE,Rt△BCF中,利用勾股定理求出AE、BF即可;
解答 (1)證明:
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵BE=DF,
∴AF=EC,
∴四邊形AECF是平行四邊形,
∵AE⊥BC,
∴∠AEC=90°,
∴四邊形AECF是矩形.
(2)解:∵BF平分∠ABC,AD∥BC,
∴∠ABF=∠CBF=∠AFB,
∴AB=AF=3,AD=BC=4,
在Rt△ABE中,AE=CF=$\sqrt{A{B}^{2}-B{E}^{2}}$=2$\sqrt{2}$,
在Rt△BFC中,BF=$\sqrt{B{C}^{2}+C{F}^{2}}$=$\sqrt{{4}^{2}+(2\sqrt{2})^{2}}$=2$\sqrt{6}$.
點(diǎn)評(píng) 本題考查平行四邊形的性質(zhì)、矩形的判定和性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①②③④ | B. | ④①③② | C. | ④②③① | D. | ④③②① |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ∠1=∠5 | B. | ∠1=∠4 | C. | ∠2=∠3 | D. | ∠1=∠2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com