分析 (1)首先證明Rt△ABE≌Rt△DEC可得∠AEB=∠ECD,BE=CE,再根據(jù)∠ECD+∠DEC=90°可得∠AEB+∠DEC=90°,進而可得∠BEC=90°,△BEC是等腰直角三角形;
(2)由△BEC是等腰直角三角形,BC=10$\sqrt{2}$,可求出BE=CE=10,又AB=6,可根據(jù)勾股定理得到AE=8,由Rt△ADE≌Rt△BEC,可知AB=DE=6,AE=CD=8,根據(jù)梯形面積公式計算即可.
解答 證明:(1)∵AB∥DC,
∴∠A+∠D=180°,
∵∠A=90°,
∴∠D=90°,
∴∠ECD+∠DEC=90°,
∵∠1=∠2,
∴BE=EC,
在Rt△ABE和Rt△DEC中,
$\left\{\begin{array}{l}{AE=DC}\\{BE=CE}\end{array}\right.$,
∴Rt△ABE≌Rt△DEC(HL),
∴∠AEB=∠ECD,
∴∠AEB+∠DEC=90°,
∴∠BEC=180°-90°=90°
∴△BEC是等腰直角三角形;
(2)∵△BEC是等腰直角三角形,BC=10$\sqrt{2}$,
∴BE=CE=10,
又∵AB=6,
∴在Rt△BAE中
AE=$\sqrt{B{E}^{2-}A{B}^{2}}$=8,
∵Rt△ADE≌Rt△BEC,
∴AB=DE=6,AE=CD=8,
∴四邊形ABCD的面積=$\frac{1}{2}$×(AB+CD)×(AE+ED)=$\frac{1}{2}$×14×14=128.
點評 此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是掌握證明三角形全等的判定方法:SSS、ASA、SAS、AAS、HL.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com