分析 設(shè)Q是AB的中點(diǎn),連接DQ,先證得△AQD≌△AOE,得出QD=OE,根據(jù)點(diǎn)到直線的距離可知當(dāng)QD⊥BC時(shí),QD最小,然后根據(jù)等腰直角三角形的性質(zhì)求得QD⊥BC時(shí)的QD的值,即可求得線段OE的最小值.
解答 解:設(shè)Q是AB的中點(diǎn),連接DQ,
∵∠BAC=∠DAE=90°,![]()
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
∵AB=AC=2,O為AC中點(diǎn),
∴AQ=AO,
在△AQD和△AOE中,
$\left\{\begin{array}{l}{AQ=AO}\\{∠QAD=∠OAE}\\{AD=AC}\end{array}\right.$,
∴△AQD≌△AOE(SAS),
∴QD=OE,
∵點(diǎn)D在直線BC上運(yùn)動(dòng),
∴當(dāng)QD⊥BC時(shí),QD最小,
∵△ABC是等腰直角三角形,
∴∠B=45°,
∵QD⊥BC,
∴△QBD是等腰直角三角形,
∴QD=$\frac{\sqrt{2}}{2}$QB,
∵QB=$\frac{1}{2}$AB=1,
∴QD=$\frac{\sqrt{2}}{2}$,
∴線段OE的最小值是為 $\frac{\sqrt{2}}{2}$.
故答案為$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查了等腰直角三角形的性質(zhì)、三角形全等的判定和性質(zhì)、垂線段最短等知識(shí),作出輔助線構(gòu)建全等三角形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2種 | B. | 3種 | C. | 4種 | D. | 5種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 20° | B. | 35° | C. | 130° | D. | 140° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 80 | B. | 70 | C. | 75 | D. | 55 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若上升3米記作+3米,則不升不降記為0米 | |
| B. | 水位的變化是-2米,表示的意義是水位下降了-2米 | |
| C. | 溫度上升-10℃是指下降10℃ | |
| D. | 盈利-10元是指虧損10元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com