分析 可先證明△ABD≌△EBC,可判斷①;再證明△ABM≌△EBM,可判斷②;可證明△BMN為等邊三角形,可判斷③;利用等邊三角形的三線合一可判斷④,可求得答案.
解答 解:
∵△ABE,△BCD均為等邊三角形,
∴AB=BE,BC=BD,∠ABE=∠CBD=60°,
∴∠ABD=∠EBC,
在△ABD和△EBC中
$\left\{\begin{array}{l}{AB=BE}\\{∠ABD=∠EBC}\\{BD=BC}\end{array}\right.$
∴△ABD≌△EBC(SAS),![]()
∴AD=EC,故①正確;
∴∠DAB=∠BEC,
又由上可知∠ABE=∠CBD=60°,
∴∠EBD=60°,
在△ABM和△EBN中
$\left\{\begin{array}{l}{∠MAB=∠NEB}\\{AB=BE}\\{∠ABE=∠EBN}\end{array}\right.$
∴△ABM≌△EBN(ASA),
∴BM=BN,故②正確;
∴△BMN為等邊三角形,
∴∠NMB=∠ABM=60°,
∴MN∥AC,故③正確;
若EM=MB,則AM平分∠EAB,
則∠DAB=30°,而由條件無(wú)法得出這一條件,
故④不正確;
綜上可知正確的有①②③,
故答案為:①②③.
點(diǎn)評(píng) 本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 與標(biāo)準(zhǔn)質(zhì)量的差值 (單位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2 |
| 筐數(shù) | 1 | 4 | 2 | 4 | 1 | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 旋轉(zhuǎn)中心是點(diǎn)C | |
| B. | 順時(shí)針旋轉(zhuǎn)角是90° | |
| C. | 旋轉(zhuǎn)中心是點(diǎn)B,旋轉(zhuǎn)角是∠ABC | |
| D. | 既可以是逆時(shí)針旋轉(zhuǎn)又可以是順時(shí)針旋轉(zhuǎn) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com