分析 (1)根據(jù)切線的性質(zhì)得到∠ACB=90°,根據(jù)平行線的性質(zhì)得到OE⊥AC,根據(jù)垂徑定理即可得到結(jié)論;
(2)根據(jù)切線的性質(zhì)得到∠ABD=90°,根據(jù)等腰三角形的性質(zhì)得到∠CBD=∠2,解直角三角形即可得到結(jié)論.
解答
(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∵OE∥BC,
∴OE⊥AC,
∴$\widehat{AE}$=$\widehat{CE}$,
∴∠1=∠2,
∴BE平分∠ABC;
(2)解:∵BD是⊙O的切線,
∴∠ABD=90°,
∵∠ACB=90°,BH=BD=2,
∴∠CBD=∠2,
∴∠1=∠2=∠CBD,
∴∠CBD=30°,∠ADB=60°,
∵∠ABD=90°,
∴AB=2$\sqrt{3}$,OB=$\sqrt{3}$,
∵OD2=OB2+BD2,
∴OD=$\sqrt{7}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),圓周角定理,垂徑定理,角平分線的判定,勾股定理,正確的識(shí)別圖形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com