分析 過(guò)點(diǎn)A作AP⊥BC于P,交CD于H,由EF⊥BC,得到AP∥EF,于是推出△CEG∽△CAH,△CGF∽△CPH,得到$\frac{EG}{AH}=\frac{AH}{CP}=\frac{1}{2}$,又由于△BDC∽△ADH,得到$\frac{AD}{CD}=\frac{AH}{BC}$,根據(jù)AB=AC推出BC=2PC,得到$\frac{AD}{CD}=\frac{1}{4}$,于是得到結(jié)果.
解答
解:過(guò)點(diǎn)A作AP⊥BC于P,交CD于H,
∵EF⊥BC,
∴AP∥EF,
∴△CEG∽△CAH,△CGF∽△CPH,
∴$\frac{EG}{AH}=\frac{CG}{CH}$,$\frac{CG}{CH}=\frac{CF}{CP}$,
∴$\frac{EG}{AH}=\frac{CF}{CP}$,
∴$\frac{EG}{CF}=\frac{AH}{CP}$,
∵EG=$\frac{1}{2}$CF,
∴$\frac{EG}{CF}=\frac{AH}{CP}$=$\frac{1}{2}$,
∵∠B+∠BAH=∠DAH+∠BAH=90°,
∴∠B=∠DHA,
∴△BDC∽△ADH,
∴$\frac{AD}{CD}=\frac{AH}{BC}$,
∵AB=AC,
∴BC=2PC,
∴$\frac{AD}{CD}=\frac{1}{4}$,
設(shè)AD=k,CD=4k,則AC=AB=$\sqrt{17}k$,
∴BD=$\sqrt{17}k-k$,
∴$\frac{AD}{BD}=\frac{1}{\sqrt{17}-1}=\frac{\sqrt{17}+1}{16}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 2$\sqrt{3}$ | C. | 8 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com