欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究發(fā)現(xiàn)】
(1)請(qǐng)你判斷AM、AD、MC三條線段的數(shù)量關(guān)系,并說(shuō)明理由
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,上述(1)、(2)中的結(jié)論是否仍然成立?請(qǐng)分別作出判斷,不需要證明.

分析 (1)從平行線和中點(diǎn)這兩個(gè)條件出發(fā),延長(zhǎng)AE、BC交于點(diǎn)N,如圖1(1),易證△ADE≌△NCE,從而有AD=CN,只需證明AM=NM即可.
(2)作FA⊥AE交CB的延長(zhǎng)線于點(diǎn)F,易證AM=FM,只需證明FB=DE即可;要證FB=DE,只需證明它們所在的兩個(gè)三角形全等即可.
(3)在圖2(1)中,仿照(1)中的證明思路即可證到AM=AD+MC仍然成立;在圖2(2)中,采用反證法,并仿照(2)中的證明思路即可證到AM=DE+BM不成立.

解答 證明:證明:延長(zhǎng)AE、BC交于點(diǎn)N,如圖1(1),

∵四邊形ABCD是正方形,
∵四邊形ABCD是正方形,
∴AD∥BC.
∴∠DAE=∠ENC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠ENC=∠MAE.
∴MA=MN.
∴△ADE≌△NCE(AAS)
∴AD=NC.
∴MA=MN=NC+MC=AD+MC.

(2)AM=DE+BM成立.
證明:如圖1(2)所示.

∵四邊形ABCD是正方形,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,
∴∠FAE=90°.
∴∠FAB=90°-∠BAE=∠DAE.
∴△ABF≌△ADE(ASA).
∴BF=DE,∠F=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
∴∠F=∠FAM.
∴AM=FM.
∴AM=FB+BM=DE+BM.

(3)①結(jié)論AM=AD+MC仍然成立.
證明:延長(zhǎng)AE、BC交于點(diǎn)P,如圖2(1),

∵四邊形ABCD是矩形,
∴AD∥BC.
∴∠DAE=∠EPC.
∵AE平分∠DAM,
∴∠DAE=∠MAE.
∴∠EPC=∠MAE.
∴MA=MP.
∴△ADE≌△PCE(AAS).
∴AD=PC.
∴MA=MP=PC+MC=AD+MC.
②結(jié)論AM=DE+BM不成立.
證明:假設(shè)AM=DE+BM成立.過(guò)點(diǎn)A作AQ⊥AE,交CB的延長(zhǎng)線于點(diǎn)Q,如圖2(2)所示.

∵四邊形ABCD是矩形,
∴∠BAD=∠D=∠ABC=90°,AB∥DC.
∵AQ⊥AE,
∴∠QAE=90°.
∴∠QAB=90°-∠BAE=∠DAE.
∴∠Q=90°-∠QAB=90°-∠DAE=∠AED.
∵AB∥DC,
∴∠AED=∠BAE.
∵∠QAB=∠EAD=∠EAM,
∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB,
∴∠Q=∠QAM.
∴AM=QM.
∴AM=QB+BM.
∵AM=DE+BM,
∴QB=DE.
∴△ABQ≌△ADE(AAS),
∴AB=AD.與條件“AB≠AD“矛盾,故假設(shè)不成立.
∴AM=DE+BM不成立.

點(diǎn)評(píng) 本題是四邊形綜合題,主要考查了正方形及矩形的性質(zhì)、全等三角形的性質(zhì)和判定、等腰三角形的判定、平行線的性質(zhì)、角平分線的定義等知識(shí),考查了基本模型的構(gòu)造(平行加中點(diǎn)構(gòu)造全等三角形),考查了反證法的應(yīng)用,綜合性比較強(qiáng).添加輔助線,構(gòu)造全等三角形是解決這道題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.解不等式1+$\frac{x+1}{2}$≥2-$\frac{x+7}{3}$,并求出其最小整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過(guò)點(diǎn)C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖②,將△DEF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷$\frac{PM}{CN}$的值是否會(huì)隨著α的變化而變化,如果不變,請(qǐng)求出$\frac{PM}{CN}$的值;反之,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),在不添加任何輔助線的情況下,如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件是BE=FD或BF=DE或∠1=∠2(答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.△ABC的三邊分別為下列各組值,其中不是直角三角形三邊的是(  )
A.a=13,b=12,c=5B.a=1.2,b=1.6,c=2C.a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$D.a=$\frac{4}{3}$,b=$\frac{5}{3}$,c=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.關(guān)于x的不等式組$\left\{\begin{array}{l}{x>a}\\{x<1}\end{array}\right.$的解集為無(wú)解,則a的取值范圍是( 。
A.a>1B.a<1C.a≥1D.a≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共30只,某小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n1001502005008001000
摸到白球的次數(shù)m5896116295484601
摸到白球的頻率0.580.640.580.590.6050.601
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近0.60;
(2)假如你去摸一次,你摸到白球的概率是0.60,摸到黑球的概率是0.40;
(3)試估算口袋中黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,AB∥DE,∠B=80°,CM平分∠BCD,CN⊥CM,求∠NCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,有一條長(zhǎng)方形的寬紙帶,按圖折疊,則∠α=( 。
A.30°B.60°C.70°D.75°

查看答案和解析>>

同步練習(xí)冊(cè)答案