分析 易證△ABE≌△DBC,則有∠BAE=∠BDC,從而可證到△ABP≌△DBQ,則有AP=DQ,BP=BQ,由∠PBQ=60°可得△BPQ是等邊三角形,則有PQ=PB.∠BPQ=60°,從而可得∠EPB>∠EBP,即可得到EB>EP,即EC>EP,由△ABE≌△DBC可得S△ABE=S△DBC,AE=DC,從而可得點(diǎn)B到AE、DC的距離相等,因而點(diǎn)B在∠AOC的角平分線上,即可得到∠AOB=∠BOC=∠COE=60°.
解答 解:∵△ABD和△BCE都是等邊三角形,
∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°,
∵點(diǎn)A、B、C在同一直線上,
∴∠DBE=180°-60°-60°=60°,
∴∠ABE=∠DBC=120°.
在△ABE和△DBC中,
$\left\{\begin{array}{l}{BD=BA}\\{∠ABE=∠DBC}\\{BE=BC}\end{array}\right.$,
∴△ABE≌△DBC,
∴∠BAE=∠BDC.
在△ABP和△DBQ中,
$\left\{\begin{array}{l}{∠BAP=∠BDQ}\\{AB=DB}\\{∠ABP=∠DBQ=60°}\end{array}\right.$,
∴△ABP≌△DBQ,
∴AP=DQ,BP=BQ.
∴①正確.
∵∠PBQ=60°,
∴△BPQ是等邊三角形,
∴PQ=PB.∠BPQ=60°.
∴③正確.![]()
∵∠EPB>∠BPQ,∠BPQ=∠EBP=60°,
∴∠EPB>∠EBP,
∴EB>EP,
∴EC>EP,
∴②不正確.
∵∠DPA=∠PDO+∠DOP,∠DPA=∠PAB+∠ABP,∠PDO=∠PAB,
∴∠DOP=∠ABP=60°,
∴∠COE=60°,∠AOC=120°.
∵△ABE≌△DBC,
∴S△ABE=S△DBC,AE=DC,
∴點(diǎn)B到AE、DC的距離相等,
∴點(diǎn)B在∠AOC的角平分線上,
∴∠AOB=∠BOC=$\frac{1}{2}$∠AOC=60°,
∴∠AOB=∠BOC=∠COE=60°.
∴④正確.
故答案為①③④.
點(diǎn)評(píng) 本題主要考查了等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì)、角平分線的判定、大角對(duì)大邊等知識(shí),根據(jù)到角兩邊距離相等的點(diǎn)在這個(gè)角的角平分線上,得到OB是∠AOC的角平分線,是證明④的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 日期 | 1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | 6號(hào) | 7號(hào) |
| 人數(shù)(萬(wàn)人) | +5 | -1.2 | +5.7 | -0.6 | +1.8 | -2.9 | -2.5 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com