分析 (1)根據(jù)圖形即可得到圖中所有的相似三角形;
(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EBF,再根據(jù)折疊的性質(zhì)可以判定出∠AEB=∠BEG,然后得到∠EBF=∠BEF,從而判斷出△FEB為等腰三角形,再根據(jù)等角的余角相等求出∠ABG=∠EFB,然后根據(jù)等腰三角形的兩個底角相等求出∠BAG=∠FBE,然后根據(jù)兩角對應(yīng)相等,兩三角形相似,即可得到△ABG∽△BFE.
解答
解:(1)在不添加字母的情況下,圖中所有的相似三角形:
△DAB∽△DGE∽△BGF,△ABG∽△BFE;
(2)選擇:△ABG∽△BFE.
證明:∵AD∥BC,
∴∠AEB=∠EBF,
∵△EAB≌△EGB,
∴∠AEB=∠BEG,
∴∠EBF=∠BEF,
∴FE=FB,
∴△FEB為等腰三角形.
∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,
∴∠ABG=∠EFB,
在等腰△ABG和△FEB中,∠BAG=(180°-∠ABG)÷2,∠FBE=(180°-∠EFB)÷2,
∴∠BAG=∠FBE,
∴△ABG∽△BFE.
點評 本題綜合考查了相似三角形的性質(zhì)與判定以及折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應(yīng)邊和對應(yīng)角相等.解決問題的關(guān)鍵是掌握:有兩組角對應(yīng)相等的兩個三角形相似.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com