分析 (1)首先求出∠ADE的度數(shù),再根據(jù)圓周角定理求出∠AOC的度數(shù),最后求出∠OCE的度數(shù);
(2)由弦CD與直徑AB垂直,利用垂徑定理得到E為CD的中點(diǎn),求出CE的長,在直角三角形OCE中,設(shè)圓的半徑OC=r,OE=OA-AE,表示出OE,利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到圓的半徑r的值.
解答 解:(1)∵CD⊥AB,∠A=48°,
∴∠ADE=42°.
∴∠AOC=2∠ADE=84°,
∴∠OCE=90°-84°=6°;
(2)解:因?yàn)锳B是圓O的直徑,且CD⊥AB于點(diǎn)E,所以CE=$\frac{1}{2}$CE=$\frac{1}{2}$×4$\sqrt{2}$=2$\sqrt{2}$,
在Rt△OCE中,OC2=CE2+OE2,
設(shè)圓O的半徑為r,則OC=r,OE=OA-AE=r-2,所以r2=(2$\sqrt{2}$)2+(r-2)2,
解得:r=3.所以圓O的半徑為3.
點(diǎn)評 此題考查了垂徑定理,勾股定理,以及圓周角定理,熟練掌握定理是解本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 14 | B. | -14 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 其圖象的開口向下 | B. | 其圖象的對稱軸為x=-3 | ||
| C. | 其最大值為1 | D. | 當(dāng)x<3時,y隨x的增大而減小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{AD}{AB}$=$\frac{AE}{BC}$ | B. | $\frac{AE}{BC}$=$\frac{AD}{BD}$ | C. | $\frac{DE}{BC}$=$\frac{AE}{AB}$ | D. | $\frac{DE}{BC}$=$\frac{AD}{AB}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=(x-1)2+2 | B. | y=(x+1)2+2 | C. | y=(x-2)2+1 | D. | y=(x+2)2+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com