欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.某中學(xué)綜合實(shí)踐小組同學(xué),想測量金龍山觀音大佛的高度,他們在山腳下的D處測得山頂B的仰角為30°,沿著山腳向前走了4米達(dá)到E處,測得觀音大佛的頭頂A的傾角為45°,已知金龍山的山頂距地面的標(biāo)高(線段BC的長度)為60米,請計(jì)算觀音大佛的高度為多少米?(結(jié)果精確到0.1米,$\sqrt{3}$≈1.73)

分析 由題可知,在圖中有兩個直角三角形,在Rt△BDC中,利用30°角的余切求出DC;在Rt△AEC中,利用45°角的正切求出AC,進(jìn)而即可求得AB.

解答 解:在Rt△BDC中,由cot∠D=$\frac{DC}{BC}$,得DC=BC•cot30°=60×$\sqrt{3}$=60$\sqrt{3}$,
EC=DC-DE=60$\sqrt{3}$-4,
在Rt△AEC中,由tan∠AEC=$\frac{AC}{EC}$,得AC=EC•tan45°=60$\sqrt{3}$-4,
AB=AC-BC=60$\sqrt{3}$-4-60≈39.8,
即觀音大佛的高度約為39.8米

點(diǎn)評 本題考查了解直角三角形的應(yīng)用,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.計(jì)算:|-6|+$\sqrt{8}$-4sin45°+(-1)2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.某市的電力緊缺,電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費(fèi)辦法,規(guī)定:若每月用電量不超過190度,收費(fèi)標(biāo)準(zhǔn)為0.53元/度;若每月用電量為190度-290度,收費(fèi)標(biāo)準(zhǔn)由兩部分組成:①其中190度;按0.53元/度收費(fèi),②超出190度的部分按0.58元/度收費(fèi).現(xiàn)提供一居民某月電費(fèi)發(fā)票的部分信息如下表所示:
Xxx居民電費(fèi)專用發(fā)票
計(jì)費(fèi)期限:一個月
用電量(度)電價(jià)(元/度)
階梯一:1900.53
階梯二:190-290(超出部分)0.58
本月實(shí)用金額:106.5(元)(大寫)壹佰零陸元伍角
根據(jù)以上提供信息解答下列問題:
(1)如果月用電量x度來表示,實(shí)付金額用y元來表示,請你寫出實(shí)付金額用y元與月用電量x度之間的函數(shù)關(guān)系式;
(2)請你根據(jù)表中本月實(shí)付金額計(jì)算這個家庭本月的實(shí)際用電量;
(3)若小強(qiáng)和小華家一個月的實(shí)際用電量分別為120度和250度,則實(shí)付金額分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直角三角形ABC中,∠C=90°,矩形DEFG的四個頂點(diǎn)都在△ABC的邊上,已知:AC=8,BC=6.
(1)當(dāng)四邊形DEFG為正方形時,求EF的長;
(2)△BEF與△FCG能全等嗎?若能,請你求出EF的長;若不能,請說明理由;
(3)△BEF與△ADG能全等嗎?若能,請你求出EF的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖1,點(diǎn)P是以r為半徑的圓O外一點(diǎn),點(diǎn)P′在線段OP上,若滿足OP•OP′=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于圓O的反演點(diǎn).如圖2,在Rt△ABO中,∠B=90°,AB=2,BO=4,圓O的半徑為2,如果點(diǎn)A′、B′分別是點(diǎn)A、B關(guān)于圓O的反演點(diǎn),那么A′B′的長是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y=$\frac{1}{2}$x2+2(m+1)x-m+1與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,其對稱軸是直線x=4.
(1)求拋物線的解析式是頂點(diǎn)坐標(biāo);
(2)求C點(diǎn)的坐標(biāo)及△ABC的面積;
(3)已知與x軸平行的直線y=t及拋物線對稱軸上的點(diǎn)D(4,t+1),問是否存在這樣的t值,使得拋物線上任意一點(diǎn)P(a,b)到這條直線的距離等于P點(diǎn)到D點(diǎn)的距離?若存在,則請求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,將紙片△ABC沿DE折疊,點(diǎn)A落在點(diǎn)A′處,已知∠1=140°,∠2=40°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.捍衛(wèi)祖國海疆是人民海軍的神圣職責(zé).我海軍在相距20海里的A、B兩地設(shè)立觀測站(海岸線是過A、B的直線).按國際慣例,海岸線以外12海里范圍內(nèi)均為我國領(lǐng)海,外國船只除特許外,不得私自進(jìn)入我國領(lǐng)海.某日,觀測員發(fā)現(xiàn)一外國船只行駛至P處,在A觀測站測得∠BAP=63°,同時在B觀測站測得∠ABP=34°.問此時是否需要向此未經(jīng)特許的船只發(fā)出警告,命令其退出我國領(lǐng)海?(參考數(shù)據(jù):sin63°≈$\frac{9}{10}$,tan63°≈2,sin34°≈$\frac{3}{5}$,tan34°≈$\frac{2}{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算
(1)($\frac{1}{2}$)-1+|-2|-(π-1)0 
(2)$\frac{{x}^{2}-{y}^{2}}{{x}^{2}-2xy+{y}^{2}}$÷$\frac{{x}^{2}y+x{y}^{2}}{x-y}$
(3)$\frac{1}{x+1}$-$\frac{1}{{x}^{2}-1}$-$\frac{{x}^{2}-2x+1}{x+1}$ 
(4)解方程:$\frac{1}{x-2}$+3=$\frac{1-x}{2-x}$.

查看答案和解析>>

同步練習(xí)冊答案