欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
19.如圖1是邊長為1的六個小正方形組成的平面圖形,將它圍成圖2的正方體,則圖1中小正方形頂點A,B在圍成的正方體上的距離是( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.0

分析 將圖1折成正方體,然后判斷出A、B在正方體中的位置關系,從而可得到AB之間的距離.

解答 解:將圖1折成正方體后點A和點B為同一條棱的兩個端點,
故AB=1.
故選:C.

點評 本題主要考查的是展開圖折成幾何體,判斷出點A和點B在幾何體中的位置關系是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

2.如圖,在△ABC中,∠ACB=90°,點M為△ABC外一點,且AM⊥BM,CM平分∠AMB的外角.
(1)求證:CA=CB;
(2)求證:BM-AM=$\sqrt{2}$CM(用兩種方法).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

3.如圖,在平面直角坐標系中,一次函數y=kx+b(k≠0)的圖象與反比例函雙y=$\frac{m}{x}$(m≠0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點C作CM⊥x軸,垂足為M,若tan∠CAM=$\frac{3}{4}$,OA=2.
(1)求反比例函數和一次函數的解析式;
(2)點D是反比例函數圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

7.觀察下面三行數:
-3,9,-27,81,-243,…①
0,12,-24,84,-240,…②
3,-9,27,-81,243,…③
(1)第①行數按什么規(guī)律排列?
(2)第②③行數與第①行數分別有什么關系?
(3)取每行數的第6個數,計算這三個數的和.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

14.某客運公司的特快巴士與普通巴士同時從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達乙地后停止,特快巴士到達乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時間x(小時)之間的函數圖象如圖所示.求普通巴士到達乙地時,特快巴士與甲地之間的距離為187.5千米.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

4.依法納稅是每個公民應盡的義務,《中華人民共和國個人所得稅》規(guī)定,公民全月工薪收入不超過3500元的部分不必納稅,超過3500元的部分為全月應納稅所得稅額,此項稅款按下表分段累計計算:
全月應納稅所得稅額稅額
不超過500元的部分5%
超過500元至2000元的部分10%
超過500元至5000元的部分15%
(1)若黃先生三月份的工資為4500元,則他應該納多少元的稅?那么黃先生拿到手的工資是多少元?
(2)黃先生今年4月份繳納個人所得稅稅金125元,則黃先生該月的工資收入是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

11.類比特殊四邊形的學習,我們可以定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
探索體驗
(1)如圖①,已知四邊形ABCD是“等對角的四邊形”,∠A≠∠C,∠A=70°,∠B=80°,求∠C,∠D的度數.
(2)如圖②,若AB=AD=a,CB=CD=b,且a<b,那么四邊形ABCD是“等對角四邊形”嗎?試說明理由.
嘗試應用
(3)如圖③,在邊長為5的正方形木板ABEF上裁出“等對角四邊形”ABCD,若已經確定DA=4,∠DAB=60°.能否在正方形ABEF內(包括邊上)確定點C,使四邊形ABCD為面積最大的“等對角四邊形”?若能確定出點C,試求四邊形ABCD的最大面積;若不能確定,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

8.(1)計算:-24÷($\frac{2}{3}$)2+3$\frac{1}{2}$×(-$\frac{1}{3}$)-(-0.5)2;
(2)化簡求值3x2y-[2xy2-2(xy-$\frac{3}{2}$x2y)+xy]+3xy2,其中x=3,y=-$\frac{1}{3}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

9.如圖,已知雙曲線y=$\frac{k}{x}$經過點B(3$\sqrt{3}$,1),點A是雙曲線第三象限上的動點,過B作BC⊥y軸,垂足為C,連接AC.
(1)求k的值;
(2)若△ABC的面積為6$\sqrt{3}$,求直線AB的解析式;
(3)在(2)的條件下,寫出反比例函數值大于一次函數值時x的取值范圍.

查看答案和解析>>

同步練習冊答案