分析 如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出$\frac{PQ}{PR}$=$\frac{PE}{PF}$=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,設(shè)PQ=4x,則AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解決問題.
解答 解:如圖作PQ⊥AB于Q,PR⊥BC于R.![]()
∵∠PQB=∠QBR=∠BRP=90°,
∴四邊形PQBR是矩形,
∴∠QPR=90°=∠MPN,
∴∠QPE=∠RPF,
∴△QPE∽△RPF,
∴$\frac{PQ}{PR}$=$\frac{PE}{PF}$=2,
∴PQ=2PR=2BQ,
∵PQ∥BC,
∴AQ:QP:AP=AB:BC:AC=3:4:5,設(shè)PQ=4x,則AQ=3x,AP=5x,BQ=2x,
∴2x+3x=3,
∴x=$\frac{3}{5}$,
∴AP=5x=3.
故答案為3.
點(diǎn)評 本題考查相似三角形的判定和性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,屬于中考常考題型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{6}$ | B. | $\sqrt{12}$ | C. | $\sqrt{18}$ | D. | $\sqrt{36}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 40° | C. | 50° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{6}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 2$\sqrt{3}$-$\sqrt{3}$=2 | C. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | D. | $\frac{\sqrt{2}}{\sqrt{5}}$=5$\sqrt{10}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | xy>yz | B. | xz>yz | C. | xy>xz | D. | xy2>zy2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | OA=OC,OB=OC | B. | OA=OB=OC=OD | ||
| C. | OA=OC,OB=OD,AC=BD | D. | OA=OB=OC=OD,AC⊥BD |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com