分析 (1)由在?ABCD中,E是BC的中點,利用ASA,即可判定△ABE≌△FCE,繼而證得結(jié)論;
(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三線合一,證得結(jié)論.
解答 證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥DF,
∴∠ABE=∠FCE,
∵E為BC中點,
∴BE=CE,
在△ABE與△FCE中,
$\left\{\begin{array}{l}{∠ABE=∠FCE}\\{BE=CE}\\{∠AEB=∠CEF}\end{array}\right.$,
∴△ABE≌△FCE(ASA),
∴AB=FC;
(2)∵AD=2AB,AB=FC=CD,
∴AD=DF,
∵△ABE≌△FCE,
∴AE=EF,
∴DE⊥AF.
點評 此題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x1>x2 | B. | x1=x2 | C. | x1<x2 | D. | 不確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com