分析 (1)要證明∠P=∠BAC,只要證明∠CAP+∠BAC=∠P+∠CAP即可,根據(jù)題目中的條件可以證明它們相等,從而可以解答本題;
(2)要證明直線CD是⊙O的切線,只要證明∠OCD=90°即可,根據(jù)題目中的條件和(1)中的結(jié)論可以證明∠OCD=90°,從而可以解答本題.
解答
證明:(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACP=90°,
∴∠P+∠CAP=90°,
∵AP⊙O是切線,
∴∠BAP=90°,
即∠CAP+∠BAC=90°
∴∠P=∠BAC;
(2)∵CD是Rt△PAC斜邊PA的中線,
∴CD=AD,
∴∠DCA=∠DAC,
連接OC,
∵OC=OA,
∴∠OCA=∠OAC,
∴∠DCO=∠DAO=90°,
∴CD是⊙O的切線.
點(diǎn)評(píng) 本題考查切線的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (4,1) | B. | (4,-1) | C. | (1,4) | D. | (1,-4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{0.9}$ | B. | -$\sqrt{3}$ | C. | π | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com