分析 把此長方體的一面展開,在平面內(nèi),兩點之間線段最短.利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于長方體的高,另一條直角邊長等于長方體的長寬之和,利用勾股定理可求得.
解答 解:因為平面展開圖不唯一,
故分情況分別計算,進(jìn)行大、小比較,再從各個路線中確定最短的路線.
(1)展開前面、右面,由勾股定理得AB2=(5+4)2+32=90;
(2)展開前面、上面,由勾股定理得AB2=(3+4)2+52=74;
(3)展開左面、上面,由勾股定理得AB2=(3+5)2+42=80;
所以最短路徑長為$\sqrt{74}$cm.
點評 此題是平面展開圖--最短路徑問題,主要考查了勾股定理的應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年湖北省武漢市侏儒山街四校七年級3月月考數(shù)學(xué)試卷(解析版) 題型:判斷題
閱讀理【解析】
計算
時我們可以將式子中的
、
分別看成兩個相同的字母a、b;則原式可看成a+b+2a﹣3b,我們用類比合并同類項的方法可將上面的式子化簡.
【解析】
![]()
=(1+2)
+(1-3)![]()
=3
﹣2![]()
類比以上解答方式化簡:
|
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com