分析 (1)求出△ACD≌△AED,根據(jù)全等三角形的性質(zhì)得出即可;
(2)求出AD=BD,推出∠B=∠DAB=∠CAD,求出∠B=30°,即可求出BD=2CD=8,根據(jù)勾股定理求出即可.
解答 (1)證明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,
∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,
在△ACD和△AED中
$\left\{\begin{array}{l}{∠CAD=∠EAD}\\{∠C=∠AED}\\{AD=AD}\end{array}\right.$
∴△ACD≌△AED,
∴AC=AE;
(2)解:∵DE⊥AB,點(diǎn)E為AB的中點(diǎn),
∴AD=BD,
∴∠B=∠DAB=∠CAD,
∵∠C=90°,
∴3∠B=90°,
∴∠B=30°,
∵CD=DE=4,∠DEB=90°,
∴BD=2DE=8,
由勾股定理得:BE=$\sqrt{{8}^{2}-{4}^{2}}$=4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了角平分線性質(zhì),全等三角形的性質(zhì)和判定,含30度角的直角三角形性質(zhì),勾股定理,三角形內(nèi)角和定理,線段垂直平分線性質(zhì),等腰三角形的性質(zhì)的應(yīng)用,能推出△ACD≌△AED和求出∠B=30°是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5,12,13 | B. | 9,12,15 | C. | $\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$ | D. | 0.3,0.4,0.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com