分析 問題情境:根據(jù)可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出結(jié)論;
問題遷移:根據(jù)問題情境的結(jié)論可以得出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論;
實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,再根據(jù)條件由三角函數(shù)值就可以求出結(jié)論.
解答
問題情境:證明:∵AD∥BC,
∴∠ADE=∠FCE.
又∵點E是CD的中點,
∴DE=CE,
∴在△ADE與△FCE中,$\left\{\begin{array}{l}{∠ADE=∠FCE}\\{DE=CE}\\{∠AED=∠FEC}\end{array}\right.$,
∴△ADE≌△FCE(ASA),![]()
∴S△ADE=S△FCE,
∴S四邊形ABCD=S四邊形ABCE+S△ADE=S四邊形ABCE+S△FCE=S△ABF;
問題遷移:出當(dāng)直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,如圖2,
過點P的另一條直線EF交OA、OB于點E、F,設(shè)PF<PE,過點M作MG∥OB交EF于G,
由問題情境可以得出當(dāng)P是MN的中點時S四邊形MOFG=S△MON.
∵S四邊形MOFG<S△EOF,
∴S△MON<S△EOF,
∴當(dāng)點P是MN的中點時S△MON最。
實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,
在Rt△OPP1中,
∵∠POB=30°,
∴PP1=$\frac{1}{2}$OP=2,OP1=2$\sqrt{3}$.
由問題遷移的結(jié)論知道,當(dāng)PM=PN時,△MON的面積最小,
∴MM1=2PP1=4,M1P1=P1N.![]()
在Rt△OMM1中,
tan∠AOB=$\frac{M{M}_{1}}{O{M}_{1}}$,
2.25=$\frac{4}{O{M}_{1}}$,
∴OM1=$\frac{16}{9}$,
∴M1P1=P1N=2$\sqrt{3}$-$\frac{16}{9}$,
∴ON=OP1+P1N=2$\sqrt{3}$+2$\sqrt{3}$-$\frac{16}{9}$=4$\sqrt{3}$-$\frac{16}{9}$.
∴S△MON=$\frac{1}{2}$ON•MM1=$\frac{1}{2}$(4$\sqrt{3}$-$\frac{16}{9}$)×4=8$\sqrt{3}$-$\frac{32}{9}$≈10.3km2.
點評 本題考查了由特殊到一般的數(shù)學(xué)思想的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,四邊形的面積公式的運用,三角形的面積公式的運用,分類討論思想的運用,解答時建立數(shù)學(xué)模型解答是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若兩個角相等,則這兩個角是對頂角 | |
| B. | 若兩個角是對頂角,則這兩個角不等 | |
| C. | 若兩個角是對頂角,則這兩個角相等 | |
| D. | 所有同頂點的角都相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com