欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.(1)如圖1,在平行四邊形ABCD中,對角線AC、BD相交于O點,過點O的直線1與邊AB、CD分別交于點E、F,繞點O旋轉(zhuǎn)直線1,猜想直線1旋轉(zhuǎn)到什么位置時,四邊形AECF是菱形.證明你的猜想;
(2)若將(1)中四邊形ABCD改成矩形ABCD,使AB=4,BC=3.
①如圖2,繞點O旋轉(zhuǎn)直線1與邊AB、CD分別交于點E、F,將矩形ABCD沿EF折疊,當(dāng)點A與點C重合時,點D的對應(yīng)點為D′,連接DD′,求線段DF的長;
②如圖3,繞點O繼續(xù)旋轉(zhuǎn)直線1,使直線1與邊BC或BC的延長線交于點E,連接AE,將矩形ABCD沿AE折疊,點B的對應(yīng)點為B′,連接CB′得到△CEB′,當(dāng)△CEB′為直角三角形時,請直接寫出滿足條件的線段CE的長.

分析 (1)結(jié)論:當(dāng)EF⊥AC時,四邊形AECF是菱形.如圖1中,連接AF、CE.由△AOE≌△COF,推出AE=CF,由AE∥CF,推出四邊形AECF是平行四邊形,推出當(dāng)EF⊥AC時,四邊形AECF是菱形;
(2)①在Rt△ADC中,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,由△COF∽△CDA,可得$\frac{CO}{CD}$=$\frac{CF}{CA}$,求出CF即可解決問題.
②分四種情形分別求解即可.

解答 解:(1)結(jié)論:當(dāng)EF⊥AC時,四邊形AECF是菱形.
理由:如圖1中,連接AF、CE.

∵四邊形ABCD是平行四邊形,
∴AB∥CD,OA=OC,
∴∠DCA=∠BAC,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠AOE=∠COF}\\{OA=OC}\\{∠OAE=∠OCF}\end{array}\right.$,
∴△AOE≌△COF,
∴AE=CF,∵AE∥CF,
∴四邊形AECF是平行四邊形,
∴當(dāng)EF⊥AC時,四邊形AECF是菱形.

(2)①如圖2中,

在Rt△ADC中,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
由△COF∽△CDA,可得$\frac{CO}{CD}$=$\frac{CF}{CA}$,
∴$\frac{\frac{5}{2}}{4}$=$\frac{CF}{5}$,
∴CF=$\frac{25}{8}$,
∴DF=CD-CF=4-$\frac{25}{8}$=$\frac{7}{8}$.

②如圖3中,當(dāng)B′在對角線上時,△CEB′是直角三角形,易知AB′=AB=3,AC=5,CB′=1,
設(shè)EC=x,則BE=EB′=3-x,
在Rt△ECB′中,∵EC2=CB′2+EB′2,
∴12+(3-x)2=x2,
∴x=$\frac{5}{3}$,
∴CE=$\frac{5}{3}$


如圖4中,當(dāng)B′在CD上時,△CEB′是直角三角形,
易知DB′=$\sqrt{{4}^{2}-{3}^{2}}$=$\sqrt{7}$,CB′=4-$\sqrt{7}$,
設(shè)EC=x,則BE=EB′=3-x,
在Rt△ECB′中,∵EC2+CB′2=EB′2,
∴(4-$\sqrt{7}$)2+x2=(3-x)2
∴x=$\frac{4\sqrt{3}-7}{3}$,
∴CE=$\frac{4\sqrt{3}-7}{3}$.


如圖5中,當(dāng)B′在AD的延長線上時,易知CE=DB′=AB-AD=1.


如圖6中,當(dāng)B′在CD的延長線上時,設(shè)EC=x,則EB=EB′=x+3,
在Rt△CEB′中,∵EB′2=EC2+CB′2
∴(x+3)2=x2+(4+$\sqrt{7}$)2,
∴x=$\frac{7+4\sqrt{3}}{3}$,
∴CE=$\frac{7+4\sqrt{3}}{3}$,

綜上所述,滿足條件的CE的長為$\frac{5}{3}$或$\frac{4\sqrt{3}-7}{3}$或1或$\frac{7+4\sqrt{3}}{3}$.

點評 本題考查四邊形綜合題、平行四邊形的性質(zhì)、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,學(xué)會構(gòu)建方程解決問題,屬于中考壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在方格紙中,每個小正方形的邊長均為1個單位長度,有一個△ABC,它的三個頂點均與小正方形的頂點重合.
(1)將△ABC向右平移3個單位長度,得到△DEF(A與D、B與E、C與F對應(yīng))請在方格紙中畫出△DEF;
(2)在(1)的條件下,連接AE和CE,請求出△ACE的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.在“人與自然”知識競賽中,共有25道選擇題,對于每道題,答對者得4分,不答或答錯者倒扣2分,得分不低于60分者得獎,那么要得獎至少應(yīng)答對的題數(shù)是( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.若關(guān)于x的一元二次方程x2+2(k-1)x+k2-1=0有兩個不相等的實數(shù)根,則k的取值范圍是k<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.一天上午林老師來到某中學(xué)參加該校的校園開放日活動,他打算隨機聽一節(jié)九年級的課程,下表是他拿到的當(dāng)天上午九年級的課表,如果每一個班級的每一節(jié)課被聽的可能性是一樣的,那么聽數(shù)學(xué)課的可能性是$\frac{3}{16}$.
     班級
節(jié)次
1班2班3班4班
第1節(jié)語文數(shù)學(xué)外語化學(xué)
第2節(jié)數(shù)學(xué)政治物理語文
第3節(jié)物理化學(xué)體育數(shù)學(xué)
第4節(jié)外語語文政治體育

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在平面直角坐標系xOy中,A(1,1),B(2,2),雙曲線y=$\frac{k}{x}$與線段AB有公共點,則k的取值范圍是1≤k≤4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計算:(2$\sqrt{2}$-π)0-4cos60°+|$\sqrt{2}$-2|-$\sqrt{18}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2017屆山東省濟寧市階段教育學(xué)校統(tǒng)一招生考試數(shù)學(xué)模擬試卷(解析版) 題型:單選題

不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是

A. 摸出的是3個白球 B. 摸出的是3個黑球

C. 摸出的是2個白球、1個黑球 D. 摸出的是2個黑球、1個白球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年福建省仙游縣郊尾、楓亭五校教研小片區(qū)七年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖所示,已知直線AB、CD交于點O,OE⊥AB于點O,且∠1比∠2大20°,則∠AOC=__________ 。

查看答案和解析>>

同步練習(xí)冊答案