| A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
分析 根據(jù)正方形的性質(zhì)可得∠BAF=∠D=90°,AB=AD=CD,然后求出AF=DE,再利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=BF,從而判定出①正確;再根據(jù)全等三角形對應(yīng)角相等可得∠ABF=∠DAE,然后證明∠ABF+∠BAO=90°,再得到∠AOB=90°,從而得出AE⊥BF,判斷②正確;假設(shè)AO=OE,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì)可得AB=BE,再根據(jù)直角三角形斜邊大于直角邊可得BE>BC,即BE>AB,從而判斷③錯(cuò)誤;根據(jù)全等三角形的面積相等可得S△ABF=S△ADE,然后都減去△AOF的面積,即可得解,從而判斷④正確.
解答 解:在正方形ABCD中,∠BAF=∠D=90°,AB=AD=CD,
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE,
在△ABF和△DAE中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAF=∠D=90°}&{\;}\\{AF=DE}&{\;}\end{array}\right.$,
∴△ABF≌△DAE(SAS),
∴AE=BF,故①正確;
∠ABF=∠DAE,
∵∠DAE+∠BAO=90°,
∴∠ABF+∠BAO=90°,
在△ABO中,∠AOB=180°-(∠ABF+∠BAO)=180°-90°=90°,
∴AE⊥BF,故②正確;
假設(shè)AO=OE,
∵AE⊥BF(已證),
∴AB=BE(線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等),
∵在Rt△BCE中,BE>BC,
∴AB>BC,這與正方形的邊長AB=BC相矛盾,
所以,假設(shè)不成立,AO≠OE,故③錯(cuò)誤;∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF-S△AOF=S△DAE-S△AOF,
即S△AOB=S四邊形DEOF,故④正確;
綜上所述,錯(cuò)誤的有③.
故選:B.
點(diǎn)評 本題考查了正方形的四條邊都相等,每一個(gè)角都是直角的性質(zhì),全等三角形的判定與性質(zhì),綜合題但難度不大,求出△ABF和△DAE全等是解題的關(guān)鍵,也是本題的突破口.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2和3 | B. | 3和4 | C. | 4和5 | D. | 5和6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 18° | B. | 36° | C. | 72° | D. | 108° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com