分析 (1)①連結(jié)OA、OC,如圖1,利用勾股定理的逆定理證明△OCA為等腰直角三角形,∠AOC=90°,然后根據(jù)圓周角定理易得∠ABC=45°;
②先根據(jù)切線的性質(zhì)得∠OAP=90°,再證四邊形APCO為平行四邊形,加上∠AOC=90°,則可判斷四邊形AOCP為矩形,所以∠PCO=90°,然后根據(jù)切線得判斷定理得到PC為⊙O的切線;
(2)根據(jù)平行四邊形的性質(zhì)得AB∥CD,AD∥BC,再由平行線的性質(zhì)得∠B+∠A=180°,∠DCE=∠B,由圓內(nèi)接四邊形的性質(zhì)得∠E+∠A=180°,易得∠DCE=∠E,則根據(jù)等腰三角形的判定定理即可得到DC=DE.
解答 (1)解:①連結(jié)OA、OC,如圖1,
∵OA=OC=4,AC=4$\sqrt{2}$,
∴OA2+OC2=AC2,![]()
∴△OCA為等腰直角三角形,∠AOC=90°,
∴∠ABC=$\frac{1}{2}$∠AOC=45°;
②直線PC與⊙O相切.理由如下:
∵AP是⊙O的切線,
∴∠OAP=90°,
而∠AOC=90°,
∴AP∥OC,
而AP=OC=4,
∴四邊形APCO為平行四邊形,
∵∠AOC=90°,
∴四邊形AOCP為矩形,
∴∠PCO=90°,
∴PC⊥OC,
∴PC為⊙O的切線;
(2)證明:
∵四邊形ABCD為平行四邊形,
∴AB∥CD,AD∥BC,
∴∠B+∠A=180°,∠DCE=∠B,
∵∠E+∠A=180°,
∴∠E=∠B,
∴∠DCE=∠E,
∴DC=DE.
點評 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了平行四邊形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a2×a3=a6 | B. | (a+b)2=a2+b2 | C. | (a+b)(a-b)=a2-b2 | D. | (a2)3=a5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com