分析 (1)由運(yùn)動(dòng)得出BP=BQ,求出t,即可;
(2)由PM∥AD,得出$\frac{PM}{AD}=\frac{BP}{AB}$,表示出PM,從而求出t,即可;
(3)先判斷出△AEP≌△FEG,表示出BH,HQ,CQ,再由勾股定理計(jì)算即可.
解答 解:(1)當(dāng)BP=BQ時(shí),60-3t=20t,
∴t=$\frac{60}{23}$,
故答案為:$\frac{60}{23}$;
(2)如圖1,
過P作PM∥AD,
∴$\frac{PM}{AD}=\frac{BP}{AB}$,
∴$\frac{PM}{90}=\frac{60-3t}{60}$,
∴PM=90-$\frac{9}{2}$t,
∵PN=NQ,PM=BQ,
∴90-$\frac{9}{2}$t=20t,
∴t=$\frac{180}{49}$;
(3)如圖2,
作GH⊥BQ于H,
∴PB=PF=60-3t,
∵AE=EF,∠AEP=∠FEG,∠A=∠F,
∴△AEP≌△FEG,
∴PE=EG,F(xiàn)G=AP,
∴AG=PF=60-3t=BH,
∴HQ=BQ-BH=20t-(60-3t)=23t-60,
GQ=FQ-FG=BQ-AP=17t,
根據(jù)勾股定理得,602=(17t)2-(23t-60)2
∴t1=4,t2=7.5(舍),
∴t=4
∴存在t=4,使AE=EF.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了矩形的性質(zhì),等腰三角形的性質(zhì),平行線分線段成比例定理,全等三角形的性質(zhì)和判定,勾股定理等知識(shí);本題綜合性強(qiáng),有一定難度,用時(shí)間t表示線段是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 5.5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com