分析 當(dāng)△PAB的面積最大時(shí),四邊形AOBP的面積最大,因?yàn)锳B是定值,所以當(dāng)點(diǎn)P到AB的距離最大時(shí),△PAB的面積最大值,此時(shí)PA=PB,作PE⊥y軸于E,PF⊥OA于F.由△PEB≌△PFA,推出PE=PF,設(shè)PE=PF=a,再證明四邊形PEOF是正方形,在 Rt△PAF中,利用勾股定理,列出方程即可解決問(wèn)題.
解答 解:如圖,![]()
∵當(dāng)△PAB的面積最大時(shí),四邊形AOBP的面積最大,
∵AB是定值,
∴當(dāng)點(diǎn)P到AB的距離最大時(shí),△PAB的面積最大值,
此時(shí)PA=PB,作PE⊥y軸于E,PF⊥OA于F.
∵∠PBE+∠PBO=180°,∠PBO+∠PAF=180°,
∴∠PBE=∠PAF,
在△PEB和△PFA中,
$\left\{\begin{array}{l}{∠PEB=∠PFA}\\{∠PBE=∠PAF}\\{PB=PA}\end{array}\right.$,
∴△PEB≌△PFA,
∴PE=PF,設(shè)PE=PF=a,
∵∠PEO=∠EOF=∠PFO=90°,
∴四邊形PEOF是矩形,
∵PE=PF,
∴四邊形PEOF是正方形,
∴OF=PF=a,
∵BO=2,AO=4,
∴AB=2$\sqrt{5}$,
∴PB=PA=$\sqrt{10}$,
在Rt△PAF中,∵PA2=PF2+AF2,
∴10=a2+(4-a)2,
∴a=3或1(舍棄)
∴點(diǎn)P坐標(biāo)(3,3).
故答案為(3,3).
點(diǎn)評(píng) 本題考查二次函數(shù)與x軸的交點(diǎn)、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com