分析 (1)利用三角形的內(nèi)角和定理表示出∠AOD與∠BOC,再根據(jù)對(duì)頂角相等可得∠AOD=∠BOC,然后整理即可得解;
(2)根據(jù)(1)的關(guān)系式求出∠OCB-∠OAD,再根據(jù)角平分線的定義求出∠DAM-∠PCM,然后利用“8字形”的關(guān)系式列式整理即可得解;
(3)根據(jù)“8字形”用∠B、∠D表示出∠OCB-∠OAD,再用∠D、∠P表示出∠DAM-∠PCM,然后根據(jù)角平分線的定義可得∠DAM-∠PCM=$\frac{1}{2}$(∠OCB-∠OAD),然后整理即可得證.
解答
解:(1)在△AOD中,∠AOD=180°-∠A-∠D,
在△BOC中,∠BOC=180°-∠B-∠C,
∵∠AOD=∠BOC(對(duì)頂角相等),
∴180°-∠A-∠D=180°-∠B-∠C,
∴∠A+∠D=∠B+∠C;
(2)∵∠D=40°,∠B=36°,
∴∠OAD+40°=∠OCB+36°,
∴∠OCB-∠OAD=4°,
∵AP、CP分別是∠DAB和∠BCD的角平分線,
∴∠DAM=$\frac{1}{2}$∠OAD,∠PCM=$\frac{1}{2}$∠OCB,
又∵∠DAM+∠D=∠PCM+∠P,
∴∠P=∠DAM+∠D-∠PCM=$\frac{1}{2}$(∠OAD-∠OCB)+∠D=$\frac{1}{2}$×(-4°)+40°=38°;
(3)根據(jù)“8字形”數(shù)量關(guān)系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,
所以,∠OCB-∠OAD=∠D-∠B,∠PCM-∠DAM=∠D-∠P,
∵AP、CP分別是∠DAB和∠BCD的角平分線,
∴∠DAM=$\frac{1}{2}$∠OAD,∠PCM=$\frac{1}{2}$∠OCB,
∴$\frac{1}{2}$(∠D-∠B)=∠D-∠P,
整理得,2∠P=∠B+∠D.
點(diǎn)評(píng) 本題考查了三角形內(nèi)角和定理,角平分線的定義,多邊形的內(nèi)角和定理,對(duì)頂角相等的性質(zhì),整體思想的利用是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com