欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.如圖,已知∠AOB=140°,∠COF=30°,OE,OF分別為∠AOC,∠BOC的平分線,求∠BOE的度數(shù).

分析 根據(jù)角平分線的定義得出∠AOC=2∠COE,∠BOC=2∠COF,由∠AOB=140°,∠COF=30°,得到∠BOC=2∠COF=60°,∠AOC=∠AOB-∠BOC=80°,則∠COE=$\frac{1}{2}$∠AOC=40°,進(jìn)而求出∠BOE=∠COE+∠BOC=100°.

解答 解:∵OE,OF分別為∠AOC,∠BOC的平分線,
∴∠AOC=2∠COE,∠BOC=2∠COF,
又∵∠AOB=140°,∠COF=30°,
∴∠BOC=2∠COF=60°,∠AOC=∠AOB-∠BOC=80°,
∴∠COE=$\frac{1}{2}$∠AOC=40°,
∴∠BOE=∠COE+∠BOC=100°.

點(diǎn)評(píng) 本題主要考查的是角平分線、角的比較與運(yùn)算,準(zhǔn)確識(shí)圖得出角的和差關(guān)系是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E.
(1)若∠A=60°,求BC的長(zhǎng);
(2)若sinA=$\frac{4}{5}$,求AD的長(zhǎng).
(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知線段AB,利用無(wú)刻度的直尺和圓規(guī),作線段AC,使點(diǎn)B為線段AC的中點(diǎn),要求:不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某大學(xué)畢業(yè)生響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,投資開(kāi)辦了一個(gè)裝飾品商店,該店購(gòu)進(jìn)一種新上市的飾品進(jìn)行了30天的試銷售,購(gòu)進(jìn)價(jià)格為40元/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間有如下關(guān)系:P=-2x+120(1≤x≤30,且x為整數(shù));銷售價(jià)格Q(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q=$\frac{1}{2}$x+50(1≤x≤30,且x為整數(shù)).
(1)試求出該商店日銷售利潤(rùn)w(元)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;
(2)在這30天的試銷售中,哪一天的日銷售利潤(rùn)最大,哪一天的日銷售利潤(rùn)最。坎⒎謩e求出這個(gè)最大利潤(rùn)和最小利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線y=ax2+bx+c交x軸于點(diǎn)A(-1,0)、B(5,0),交y軸于點(diǎn)C(0,5),點(diǎn)D是該拋物線上一點(diǎn),且點(diǎn)D的橫坐標(biāo)為4,連BD,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)P作PQ⊥AB交射線AD于點(diǎn)Q,以PQ為一邊在PQ的右側(cè)作正方形PQMN.設(shè)點(diǎn)P的坐標(biāo)為(t,0).
(1)求拋物線解析式;
(2)若點(diǎn)Q在線段AD上時(shí),延長(zhǎng)PQ與拋物線交于點(diǎn)G,求t為何值時(shí),線段QG最長(zhǎng).
(3)在AB上是否存在點(diǎn)P,使△OCM為等腰三角形?若存在,求正方形PQMN 的邊長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)正方形PQMN與△ABD重疊部分面積為s,求s與t 的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,過(guò)點(diǎn)A(2,0)的兩條直線l1,l2分別交y軸于點(diǎn)B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=$\sqrt{13}$.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求直線l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,已知四邊形ABCD和四邊形DEFG為正方形,點(diǎn)E在線段DC上,點(diǎn)A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長(zhǎng)AE交CG于點(diǎn)H.
(1)求sin∠EAC的值.
(2)求線段AH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(archimedes,公元前287-公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并稱為三大數(shù)學(xué)王子.
阿拉伯Al-Binmi(973-1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是$\widehat{ABC}$的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過(guò)程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M(jìn)是$\widehat{ABC}$的中點(diǎn),
∴MA=MC.

任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內(nèi)接于⊙O,AB=2,D為$\widehat{AC}$上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是2+2$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.當(dāng)0<x<1時(shí),x2、x、$\frac{1}{x}$的大小順序是(  )
A.x2$<x<\frac{1}{x}$B.$\frac{1}{x}$<x<x2C.$\frac{1}{x}<{x}^{2}$<xD.x<x2<$\frac{1}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案